Renewable Energy
News
Renewable energy capacity in Sub-Saharan Africa is projected to nearly double by 2027, with the addition of over 40 GW from alternative power sources. More than 60% of this growth will be derived from South Africa, largely due to its Renewable Independent Power Producer Programme (REIPPP). However, as the world's attention increasingly focuses on optimizing energy consumption and minimizing CO₂ emissions, the sustainability of the components used in renewable energy projects becomes paramount. Electricity generation technologies Electricity generation technologies, including renewables, emit greenhouse gases during their lifecycle Dr Andrew Dickson, Engineering Executive at CBI-electric: low voltage, emphasises that despite their eco-friendly nature, all electricity generation technologies, including renewables, emit greenhouse gases during their lifecycle. “The carbon footprint of renewable energy can range from 11 to 740 grams of CO₂ equivalent per kWh. Therefore, to achieve true sustainability, it is imperative to adopt advanced, greener technologies wherever possible.” Essential for safeguarding electrical installations Dickson continues by saying, “Something as innocuous as a circuit breaker should be factored in when determining the carbon footprint an installation creates. While these are essential for safeguarding electrical installations, they still consume electrical energy during normal operation and though they are passive devices, they are contributing to CO₂ emissions." "Furthermore, this passive energy consumption ultimately translates into monetary costs. Given the growing demand for low-voltage circuit breakers as renewable energy projects expand across South Africa and the continent, it's essential to reduce these emissions and financial costs while also gaining maximum efficiency from the renewable system.” Refocus on Hy-Mag circuit breakers To this end, Dr. Dickson recommends a refocus on Hydraulic-Magnetic (Hy-Mag) circuit breakers over thermal-magnetic counterparts in renewable energy projects. “Hy-Mag circuit breakers utilise magnetic flux to switch, relying on the relationship between current flow and coil turns to create the necessary tripping force. In contrast, thermal-magnetic breakers require the heating of a bimetal strip mechanism, which, by its nature, consumes more electrical energy. This fundamental technology difference results in lower lifetime energy consumption during standard operation of Hy-Mag breakers, reducing total energy losses and carbon emissions.” Thermal-magnetic breakers' performance Dickson points out that thermal-magnetic breakers' skit is temperature-dependent, which can be problematic He also points out that thermal-magnetic breakers' performance is temperature-dependent, which can be problematic in regions with extreme temperature variations, such as South Africa's Northern Cape, which is home to numerous solar power plants. “Hy-Mag breakers, on the other hand, maintain consistent protection regardless of temperature changes, making them more suitable for environments with substantial temperature fluctuations.” Long-term success of renewable energy installations “Furthermore, Hy-Mag breakers' optimal performance within a temperature range of −40°C to +85°C minimises nuisance tripping and ensures a more stable solution,” he adds. “This not only enhances operational reliability but also extends the lifespan of the breakers, leading to more dependable performance over time.” “By adopting greener, more energy-efficient solutions, the industry can reduce carbon emissions, improve energy efficiency, and ensure the long-term success of renewable energy installations. As Sub-Saharan Africa and the world at large transition toward a more sustainable energy landscape, these innovations are pivotal in driving positive change,” concludes Dr Dickson.
Delta, a pioneer in power and smart green solutions, will showcase its latest innovations in Smart Energy Solutions at the 38th International Electric Vehicle Symposium, taking place from June 15–18, 2025. Delta’s comprehensive portfolio features cutting-edge EV charging technologies, advanced energy storage systems, and the intelligent DeltaGrid® Energy Management Solution. Delta’s integrated offerings are designed to meet evolving customer needs with flexible, scalable, and system-tailored solutions to achieve a sustainable energy future. EV charging and infrastructure solutions Arto Suni, Head of EVCS EMEA, Delta, said: "There is an exciting new wave in the market uptake of EVs. Thanks to solutions from Delta, the expansion of the charging infrastructure is gathering pace across many more countries and regions. Not only does it bring commercial opportunities to venues, locations, and car park operators, but charging on-the-go is now much more convenient for EV users." Arto Suni adds, "The 38th International Electric Vehicle Symposium is the perfect platform to debut Delta’s new Smart Energy Solutions (SES) portfolio. We look forward to discussing our latest and advanced EV charging and infrastructure solutions with those attending this year’s Symposium." Key Innovations Key Innovations Showcased at the 38th International Electric Vehicle Symposium: C7-01: EV Charging Solutions: Service Capability: This offers robust service with preventive and predictive maintenance support to ensure long-term reliability. It offers a comprehensive range of AC/DC chargers with an advanced service package and management systems that monitor charger capacity, digital operations, and maintenance services. Active remote surveillance and diagnostics are available through the Delta Service team and authorized partners in the EU and MEA regions, to ensure smooth operation and endeavor to provide proactive support to minimize downtime. UFC500 High-Power Charging Station: Enable rapid charging for modern, premium EVs, with this market-pioneering 500 kW compact charger. The German Eichrecht-certified 500 kW UltraFast EV Charger is capable of charging two vehicles simultaneously at 250 kW each. This compact, high-performance solution leverages SiC MOSFETs technology for high conversion efficiency, ensuring fast and efficient charging for diverse EVs with accurate billing and all-weather reliability, making it ideal for high-demand environments. DC Wallbox 50 kW: The DC Wallbox 50 kW provides powerful charging in an ultra-slim, 97% efficient wall-mounted design, ideal for tight spaces and featuring certified metering and payment options. An integrated meter and payment terminal caters for public EV charging, while an advanced cable management system offers a safe, durable, and user-friendly solution for cable handling. By minimizing clutter, protecting cables from wear and tear, and facilitating easy access, this system enhances safety and convenience, making the charger ideal for commercial EV fleets and public charging stations. Slim 100: The latest version of this charger offers a flexible, multi-directional setup that enables convenient charging from either side of the vehicle. The new cable management system ensures smooth cable handling across various parking positions. With a generous cable radius, it enables effortless operation and reduces strain on the cables. Delivering 2 x 50 kW DC charging simultaneously, the system can charge up to three vehicles at once. With support for up to 920 VDC, it is ready for both current and next-generation EVs. It also offers an integrated credit card payment solution and RFID user identification. Energy Storage Solutions Delta Energy Storage Solution C Series: This is an all-in-one commercial and industrial solution integrating PCS, battery, and unit controller. Its Skid-based design eliminates the need for underground trenching to streamline deployment. Flexible configuration options enable users to choose from 125 kW and 261 kWh per cabinet, scalable up to 10 units in parallel. DeltaGrid® EVM (EV Charging Management System): This is an AI-driven, Smart Energy Management platform that’s ideal for maximizing energy efficiency. It enables EV charging service providers to ensure power availability, reduce energy costs and improve customer satisfaction in new and existing EV charging infrastructures. DeltaGrid® EVM takes EV charging to the next level with the ability to integrate energy storage and renewable energy sources - such as solar - to not only improve a site’s carbon footprint, but also reduce operational costs through peak shaving, self-consumption optimization, load shifting and more. Experience Delta’s latest innovations in Smart Energy Solutions at C7-01 at the 38th International Electric Vehicle Symposium in Gothenburg, Sweden from June 15–18. Together, we’re shaping a smarter, greener energy future.
In the wake of South Africa’s longest uninterrupted period without load shedding, the rooftop solar market has experienced a slowdown, with the South African Photovoltaic Industry Association (SAPVIA) reporting a 60-80% decline in project volumes between 2023 and 2024. However, as 2025 progresses, interest in solar energy installations is expected to rebound. This is according to Dr. Andrew Dickson, Engineering Executive at CBi-electric: low voltage, who explains that several factors are set to drive the growing uptake of solar energy over the coming year. He states, “These include Eskom’s proposed tariff increase, the unreliability of aging electricity infrastructure, and the oversupply of solar technology in South Africa driving prices down.” Enhanced Renewable Energy Tax Incentive Dickson points out that while the Enhanced Renewable Energy Tax Incentive will no longer be available to businesses Dickson points out that while the Enhanced Renewable Energy Tax Incentive will no longer be available to businesses after 28 February 2025, organizations facing a 36.15% increase in their electricity costs must consider whether they can afford to overlook the benefits of going solar. “GreenCape, for example, estimates that solar PV can cut energy costs by 15%, with a return on investment achieved in three to 12 years and up to 15 years of free energy thereafter. With inflation projected to ease to 4.5% in 2025, and solar technology prices dropping, this makes for a highly cost-effective investment opportunity,” adds Dr. Andrew Dickson. Safeguarding solar investments He stresses that businesses need to take proactive steps to protect their solar systems, extending its lifespan and ensuring long-term efficiency. “Voltage spikes caused by electrical disturbances such as lightning or grid fluctuations pose a significant risk to solar PV systems. Installing surge protection devices (SPDs) is crucial to shield inverters and batteries from these threats. Without adequate surge protection, businesses may be left with expensive repair costs, as warranties could be voided,” warns Dr. Dickson. Another critical concern is the vulnerability of solar PV systems to arcing, where electrical currents jump across gaps, generating intense heat and light that can cause serious damage. To mitigate this, he recommends using DC circuit breakers specifically designed for solar systems. He adds, “These breakers are engineered to handle the direct current generated by solar panels, ensuring safe and reliable system operation.” Role in managing solar investments Dickson notes that smart technologies also play a pivotal role in managing solar investments Dr. Dickson notes that smart technologies also play a pivotal role in managing solar investments effectively. "An Astute Smart Power Indicator (ASPI), for example, can send alerts about grid power interruptions, allowing for speedy responses." said Dr. Andrew Dickson, adding "By temporarily disconnecting non-essential high-energy devices during outages, businesses can avoid system overload and preserve battery life. At the same time, by automating critical systems like lighting and security to turn on, it ensures that critical infrastructure remains operational even when mains power is down." Optimizing solar ROI in 2025 He highlights that careful system management is key to unlocking solar’s full potential. "By leveraging tools like an Astute Smart Power Indicator and surge protection devices, businesses can avoid unnecessary expenses and ensure uninterrupted operations. As the solar energy market gears up for a resurgence in 2025, organizations have a unique opportunity to benefit from its growing potential. With the right precautions in place, solar energy can deliver the long-term value that businesses seek," concludes Dr. Andrew Dickson.
Comau has agreed to collaborate with multiple industry-pioneering companies, at an international level, addressing the need for affordable automation to drive advanced on-demand manufacturing applications. The collaborations are aimed at numerous sectors, from automotive, naval and aerospace to energy, microfactories, mold & tooling, construction and beyond. Overall production efficiency Comau now delivers truly on-demand, just-in-time production when and where it is needed By accelerating automation for advanced manufacturing everywhere, Comau now delivers truly on-demand, just-in-time production when and where it is needed, fully supporting reshoring initiatives and sustainable manufacturing models. This subsequently allows manufacturers to optimize material usage, reduce waste, and enhance overall production efficiency, in perfect alignment with the market’s growing demand for sustainable, low-impact solutions. Advanced manufacturing technologies “Comau’s strategy of entering new market sectors to meet the increasing demand for advanced manufacturing technologies is being accelerated through a series of important collaborations with pioneering partners and customers across various industries." "This approach exemplifies our dedication to innovation and marks an important step in our broader journey toward global growth,” says Giacomo Del Panta, Chief Customer Management Officer of Comau. Collaborations The first collaborations include: CEAD CEAD enables customers across industries to 3D print large-scale applications, including entire boat hulls CEAD, which leverages Comau robotic arm technology integrated into its Flexbot system, to help companies all over the globe in revolutionizing their manufacturing processes by delivering large format thermoplastic composite 3D printing solutions. The company offers both standard and custom configurations, seamlessly integrating subtractive manufacturing techniques. CEAD enables customers across industries to 3D print large-scale applications, including entire boat hulls, and supports them in building microfactories that are strategically placed around the globe. KraussMaffei Group KraussMaffei Group is a leading manufacturer of machines and systems for producing and processing plastics and rubber. Its comprehensive portfolio includes solutions for injection molding, extrusion, reaction process machinery, and additive manufacturing. With both standardized and customized product, process, digital, and service solutions, KraussMaffei delivers sustainable added value across the entire value chain of its customers. Prima Additive by Sodick Prima Additive by Sodick, designs, manufactures, and distributes cutting-edge industrial systems globally Prima Additive by Sodick, designs, manufactures, and distributes cutting-edge industrial systems globally, meeting the evolving demands of key sectors such as aerospace, automotive, and energy. With a comprehensive portfolio encompassing the two main laser-based additive manufacturing technologies as well as advanced laser solution, Prima Additive drives innovation through strong, strategic partnerships. Comau and Prima Additive have joined forces to showcase the advantages of dual-layer laser cladding having developed a high-speed, fully automated brake disc coating system. Titomic Titomic is a world leader in cold spray technology, enabling large-scale additive manufacturing, coatings, and repairs utilizing novel and high-performance materials. Leveraging integrated cold spray systems, advanced software, and featuring Comau robotics, Titomic is bringing about new manufacturing capabilities for aerospace, defence, and beyond.
Expert Commentary
Fleet electrification provides opportunities to achieve climate goals while delivering social, financial, and environmental benefits to individuals, businesses, and communities, but the road to successful EV implementation is not without obstacles. Your EV fleets need to work — all the time under varying conditions — to ensure optimal uptime while maintaining energy efficiency. Consequently, electric vehicle service equipment (EVSE) can’t just be “tacked onto” your existing operation. Rather than a “new standalone addition,” it requires a thoughtful and forward-looking approach to seamlessly integrate into your overall facility. Ensuring the type of reliable power needed for an electrified fleet is critical. Luckily, there are a number of new and emerging solutions that promise to deliver clean and reliable local power generation. The Challenges The availability and reliability of the power needed to support electrified fleets is a primary roadblock for many commercial fleet operators. It’s important to look at where that power comes from, how much it will cost, and whether it will be available when needed. Projections indicate that the demand for electricity will surge by 50% during the next two decades Today’s energy landscape is complex. Projections indicate that the demand for electricity will surge by 50% during the next two decades, with no signs of slowing down. According to Grid Strategies, the U.S. electric grid is not prepared for this level of significant load growth. The sheer amount of power needed to keep trucks charged and running 24/7 can be substantial. This poses a key risk for reliability in EV infrastructures, particularly in mission-critical situations. In addition, most fleet operators have become accustomed to fairly predictable fuel costs, since many take advantage of long-term supply arrangements. By contrast, electricity grid costs can vary and result in unpredictable spikes. This adds an extra layer of complexity when it comes to the planning and timing of fleet charging. As a result, many fleet charging operations are turning to local power generation. Intelligent Microgrids, the Energy Insurance Microgrids are nothing new, with rural communities relying on them for decades. Increased affordability and shifting regulations are allowing for more of these microgrids to be powered by renewable energy methods. A common misconception is that microgrids can completely off-set power from the grid. In reality, they are designed to provide peak load shaving and system resiliency. Coupled with an EV infrastructure, microgrids can offer more flexible and reliable energy management. When compared to a traditional microgrid for a building system, microgrids for fleet electrification present new challenges. Most notably, microgrids for fleet electrification are not modeled on an existing load, but rather anticipated demand, which can make reliable load-based modeling more difficult. However, an "intelligent" microgrid uses control systems to manage, store, charge, and discharge energy across the system. Strategic energy management The system can buy power from the grid during low-cost periods while storing self-generated solar power These controls monitor supply and demand, track real-time electricity prices, and create efficient charging schedules, considering factors like Time of Use (TOU) and peak day rates. For example, when electric fleets plug in, demand may increase significantly overnight, making strategic energy management crucial. The system can buy power from the grid during low-cost periods while storing self-generated solar power for later use. When prices rise, it discharges stored energy, keeping costs stable. It can also operate independently, ensuring continuous power during outages and disruptions, improving efficiency, cost control, and reliability. Conversely, fleets often permit charging flexibility within defined boundaries, providing a unique dispatchable resource that can be tuned to fit the needs and energy resources of the customer. A New Category of Local Power Generation Linear generator technology is proving to be an innovative solution for EV infrastructures by providing flexible, resilient and cost-effective on-site base load power. Linear generator technology provides fuel-flexibility meaning they can directly run and switch among traditional fuels like natural gas or propane. Or, they can use low and zero-carbon fuels such as RNG, biogas, hydrogen, and ammonia. Its backup capabilities ensure power through hurricanes, sub-zero snowstorms, excessive heat, and other extreme conditions. Based on capex and operating costs, linear generators can provide a competitive levelized cost of ownership compared to grid power or other alternatives in certain regions. Net-zero goals These solutions allow for flexibility and integration of new fuels as they become available The technology can also be quickly deployed at scale, which is ideal for large fleet operators looking to quickly and cost-effectively deploy resilient EV charging infrastructure while reducing emissions and working toward net-zero goals. What’s more, linear generators deliver a more “future-proof” path. While the dominant sources of fuel for local power generation today is well understood, new and exciting fuels are on the horizon. These solutions allow for flexibility and integration of new fuels as they become available. All without having to replace or retrofit existing equipment. Experts Will Power the Future As companies look to integrate EVs into their operations, a well-thought-out plan for infrastructure is essential to ensure safety, reliability, and long-term success. The integration of onsite power systems will play a critical role in optimizing energy use, lowering costs, and maintaining system resilience. The good news is that energy management is becoming more flexible, ensuring that fleet electrification is not only sustainable but also cost-effective. To ensure a seamless transition and maximize the benefits of fleet electrification, many companies will be moving forward by working with experienced consultants and planners to create a future-proof infrastructure that meets both operational and environmental goals.
While the technology sector was once considered the most desirable in terms of salary and job security, recent layoffs have exposed its vulnerability. Job security has always been a sought-after job benefit, and one career path that’s often overlooked is skilled trades. The skilled trades industry stands out as a resilient sector, offering the next generation of workers a promising path for growth and professional development through on-the-job experience and education. Significant talent gap With the retirement of Baby Boomers leading to a significant talent gap, current trade professionals are now more determined than ever to attract younger workers to the industry. Regrettably, many students in high school fail to see the value of pursuing a career in skilled trades. In a 2022 survey, only 16% of students noted they were likely to consider a career in the skilled trades. However, as other industries face a high level of uncertainty, the skilled trades offer stability and constant demand for services such as new construction, renovations, and climate change-resilient building improvements. The Benefit of Trade Education One of the major benefits of skilled trades education is its flexibility and room for career advancement The skilled trades industry presents young professionals with unique opportunities for hands-on learning and digital skill development. And as the next generation begins to explore higher education alternatives to gain valuable life skills, hands-on training in skilled trades becomes increasingly appealing. In trade education, learning happens directly from experiences in the field, complemented by classroom training, on-demand video sessions, and even virtual reality (VR) simulations. This approach ensures that graduates are well-prepared to start their careers immediately, avoiding the burden of college debt. One of the major benefits of skilled trades education is its flexibility and room for career advancement. Unlike traditional four-year college programs, trade school education typically lasts around two years, making it accessible to individuals at different stages of their careers. Moreover, the skilled trades industry provides workers with continuous opportunities for education and specialization. Formal certifications or licensing requirements define career paths in the skilled trades, and workers can pursue additional certifications to open new avenues for advancement. Beyond Traditional Training Techniques To maintain its resilience, the skilled trades industry is embracing technology To maintain its resilience, the skilled trades industry is embracing technology, integrating tech-focused learning methods and digital platforms to streamline processes and increase efficiency. Gen Z is inherently tech-savvy, and incorporating new technologies in training and in the field will attract these younger generations to the industry. This can include implementing tech-focused learning methods, embracing gamification, or transitioning from physical code books to digital platforms to streamline processes, make work more efficient, and increase engagement on new tools coming onto the jobsite. While the skilled trades industry offers numerous opportunities for growth and professional development, it is essential to acknowledge that these professions are not without their risks. Enhancing safety training Skilled trade workers, particularly those in fields like construction, electrical work, and fire safety, are often exposed to serious fire, electrical, and related hazards on the job. Ensuring the safety of these workers is of paramount importance. One powerful solution to enhance safety training is the integration of digital learning technology One powerful solution to enhance safety training is the integration of digital learning technology, which is uniquely suited to provide deep immersion simulations. By incorporating virtual reality (VR) and augmented reality (AR) training modules, skilled workers can experience lifelike scenarios that simulate potential hazards in a controlled environment. This kind of training allows them to develop critical skills, practice emergency response procedures, and make informed decisions without facing real-life risks. By leveraging digital learning technology, the skilled trades industry can better equip its workers with the knowledge and experience needed to enhance job safety and minimize workplace accidents. The Bottom Line The skilled trades industry presents a promising future for the next generation of talent. It offers resilience in the face of economic fluctuations and provides abundant opportunities for growth and professional development through hands-on training. To attract a new generation to this industry, organizations must be willing to not only emphasize value, in terms of resiliency salary, to candidates, but also show that the industry is moving towards innovation just like any other profession. As the industry continues to embrace technology, such as digital learning, it will remain relevant and appealing to young, technologically adept individuals seeking rewarding and stable careers. And by showcasing the value and potential of skilled trades, we as skilled trades professionals can inspire more individuals to consider this path and take the first step toward a successful and fulfilling career.
Power Beat
Electricians play a pivotal role in preventing electrical fires by following safe practices during installations, repairs, and inspections. At a minimum, electricians should ensure all electrical wiring and components are installed according to current building codes and manufacturers' specifications. This includes using the right size wires for the amperage load, using approved materials, and properly securing all connections. During electrical inspections, electricians should identify and address any potential fire hazards. Electricians can also advise homeowners on electrical safety measures they can take to prevent fires. These include safe appliance use, avoiding overloaded outlets, and the importance of smoke detectors and fire extinguishers. Maintenance of electrical systems Ground Fault Circuit Interrupters (GFCIs) can prevent possible fires. GFCI outlets have built-in protection to detect imbalances in electrical current and quickly shut off power to prevent shocks and potential fires, particularly in areas prone to moisture like kitchens and bathrooms. Regular maintenance of electrical systems is also crucial for fire prevention. Electricians can perform preventative maintenance checks to identify and address any developing issues before they become serious fire hazards. Fire departments responded to an average of 32,160 home fires involving electrical distribution Fire departments responded to an average of 32,160 home fires involving electrical distribution and lighting equipment each year in 2015–2019, according to the National Fire Protection Association (NFPA). Electrical fires cause scores of civilian deaths and hundreds of civilian injuries, as well as millions of dollars in property damage. Fire Hazards in the Home Some of the electrical components that present fire hazards in the home include faulty electrical outlets and switches, worn or damaged components, overloaded circuits, damaged or frayed cords, and misused extension cords and power strips. Improper use of light fixtures can also be a danger, and space heaters can be a fire hazard if they are placed too close to flammable materials or left unattended. Damaged or frayed cords can cause sparks and ignite nearby flammable materials As outlets and switches age, the wiring behind them can loosen and break, causing sparks and fire. Loose plugs can also overheat and ignite surrounding materials. Plugging too many appliances into a single outlet or using extension cords instead of proper wiring can overload a circuit, thus causing overheating and fires. Damaged or frayed cords can cause sparks and ignite nearby flammable materials. Cords that are kinked, pinched, or have exposed wires should be avoided and replaced immediately. Minimizing the Risk of Electrical Fires Here are some steps a homeowner can take to minimize the risk of fire from electrical systems: Upgrade the electrical system, especially if the home is older. If the electrical system has not been updated in a while, a qualified electrician can advise if it needs modernization. This could involve upgrading to breakers with better safety features such as Arc-Fault Circuit Interrupter (AFCI) and Ground Fault Circuit Interrupter (GFCI) technology. Schedule an electrical safety inspection. Having a qualified electrician periodically inspect a home's electrical system can identify potential problems before they escalate into fire hazards. Keep flammable materials away from electrical components, including curtains, furniture, and piles of paper. Sparks and overheating can easily ignite nearby flammables. Addressing Multiple Threats Effective communication is key for electricians to impress upon homeowners the seriousness of fire hazards. Avoid technical jargon and explain fire hazards in clear, concise language that homeowners can understand. Focus on the potential consequences, like damage to property or injury, to heighten awareness. Pictures can be worth a thousand words. Show homeowners examples of damaged wiring, overloaded outlets, or faulty installations that pose fire risks. This can be done through photos on a tablet or phone, or even carrying around small physical samples. Frame the conversation around safety for the homeowner and their family. Highlight how addressing these hazards can prevent potential fires and ensure a safe living environment. Provide a written report after the inspection or repair. This report should detail the identified hazards, the corrective actions taken, and any recommendations for future maintenance or upgrades. By combining clear communication, visual aids, and a focus on safety, electricians can effectively convey the importance of addressing fire hazards to homeowners and empower them to make informed decisions about their electrical systems.
Rising material prices and inflation, in general, are likely to continue to plague electricians and others in the trade service businesses, according to a new survey conducted by the business management software platform Simpro. In the survey, 20% of electrical respondents say they are more likely to face rising material prices this year, while 20% of owners, CEOs, and business managers in the broader category of trade service businesses are more likely to face inflation concerns. ongoing economic uncertainty Another big concern across all trade service businesses is staff retention. Even higher percentages of survey respondents expect continuing challenges presented by the labor market: 73% anticipate hiring to be more challenging in 2023 than last year because of a lack of skilled workers (cited by 51% of respondents) and ongoing economic uncertainty (cited by 50%). The survey, conducted in January 2023, also highlighted changes trade service companies saw in the market last year compared to 2021. Customer acquisition Customer acquisition was more challenging in 2022, according to 66% of survey respondents In a service-based industry, customer satisfaction is a high priority: 95% of trade professionals noted that customer experience is paramount, and 73% have adopted technology tools specifically designed to enhance the customer experience. Customer acquisition was more challenging in 2022, according to 66% of survey respondents, while customer retention was more challenging for 60% of respondents. Hiring was also more difficult than in 2021, according to 76% of the survey respondents. Simpro’s smart technology solutions In the survey, Simpro seeks to highlight the ways technological innovations can shape the future of trade services businesses and their customers. Simpro’s total business management software platform for commercial trade service businesses performs functions such as job quoting, scheduling, inventory tracking, invoicing, and others. Simpro’s smart technology solutions and expert long-term support help businesses build, repair and power their future with control over operations. “Voice of the Trades” survey Trade professionals are estimated to spend more than 18 hours a week on tasks such as scheduling In the “Voice of the Trades” survey, 72% of trade professionals (including HVAC, security, plumbers, contractors, electricians, and others) believe that new software and technology must be adopted to remain competitive. Also, 60% feel that administrative burdens have a negative impact on their ability to service customers. Trade professionals, including electricians, estimate they spend more than 18 hours a week on tasks such as scheduling, inventory, invoicing and overall workflow management. The report reveals why it is so hard to find a contractor or service technician right now: 49% of respondents share a belief that time on admin has directly contributed to that customer frustration. Clear roadmap for operational efficiency “The Voice of the Trades findings confirm the need for trade businesses worldwide to implement technology solutions to lessen the burden of business management in any economy,” said Gary Specter, CEO of Simpro. “This research provides a clear roadmap for improving operational efficiency so trade organizations can better serve their customers.” The report gleaned feedback from 840 respondents who are trade industry professionals, with a geographic pool that includes the U.S., U.K., Australia, New Zealand, and Canada. Founded in 2002 by an electrical contractor and headquartered in Brisbane, Australia, Simpro supports more than 8,000 businesses and 200,000 users worldwide in the electrical, plumbing, HVAC, security and fire protection industries with 700-plus employees in six offices around the world.
Packaging materials help to protect fragile electronics and electrical components from breakage. Small electrical devices and electronics are often packaged in individual plastic coverings within a larger box. Manufacturers use a variety of plastics to produce anti-static bags, pouches, film, and bubble wrap for electronics. single-use plastics Excessive consumption of single-use plastics and other packaging materials is an emerging concern in the electrical market. The use of plastic and non-recyclable materials in equipment packaging is contributing to the electrical market’s environmental footprint. organic packaging More electrical manufacturers need to transition towards a more sustainable future and implement organic packaging. Companies can minimize the negative environmental impact and become more green-friendly. While the industry has previously had a negative environmental impact, many businesses are rectifying these issues. Using less paper, plastic, wood, metal packaging, and other auxiliary materials contributes to the goal of being lightweight, recyclable, and sustainable. polystyrene foam Of the total plastic packaging waste, around 40% is disposed of at sanitary landfills Many electrical components are packaged with plastic shrink films. In addition, polystyrene foam can be used to cushion components, and plastic corner protectors may be used to strengthen boxes. Less than 10% of the plastic waste ever generated has been recycled. Plastics pollute the ocean and do not decompose in landfills. Of the total plastic packaging waste, around 40% is disposed of at sanitary landfills, 14% is collected for recycling, and 14% makes its way to incineration facilities (which cause CO2 emissions). The negative impact of plastic The fact is, most plastics used for packaging are recyclable, although most wind up in landfills due to ineffective or non-existent packaging recovery schemes. In addition, plastics contribute to emissions of greenhouse gas at each stage of their lifecycles. Therefore, plastics, which contribute up to 13% of the total “carbon budget,” will negatively impact efforts to meet the Paris climate agreement. action against single-use plastics There is a shift in focus from consumer education to holding manufacturers responsible for their environmental impact Focusing on consumer behavior has spurred much of the campaign against plastics to date. For example, the federal government has taken steps to phase out single-use plastics in national parks and other public lands. Several states have taken action against single-use plastics. For example, New Jersey no longer allows grocery stores and retailers to distribute plastic bags. The Garden State has also banned polystyrene foam packaging from restaurants and food companies. However, there is also a shift in focus from consumer education to holding manufacturers responsible for their environmental impact. Maine and California are focusing on the issue and may be among the jurisdictions to target manufacturers’ role in single-use plastics. replacement alternatives There are replacement alternatives available, but they tend to add costs for manufacturers. For example, bioplastics are made with biodegradable sources that can break down faster than traditional plastics. However, bioplastics must be properly disposed of through composting to break down. Also, bioplastics are not recyclable and can even contaminate other recyclable materials. Disposal in a landfill, which is common, defeats the purpose of using more expensive materials. environmentally friendly alternatives Some argue that recycled plastic may be the greenest alternative, although it results in recyclables winding up in landfills Instead of polystyrene foam, packaging may consist of corrugated cardboard or plastic alternatives that are allegedly more environmentally friendly. Biodegradable wood or paper are other alternatives. However, disposal in landfills continues to be problematic with decomposition sometimes leading to the production of methane (a greenhouse gas). However, some argue that recycled plastic may be the greenest alternative, although recycling realities instead result in recyclables winding up in landfills, where they do not decompose. EPR schemes An added cost for electrical manufacturers might be a requirement to pay into extended producer responsibility (EPR) schemes. EPR is a strategy to add the estimated environmental costs associated with a product’s entire lifecycle to the cost of the product. In effect, the strategy assigns responsibility for the environmental impact of products to the manufacturer. Legislation Legislation to address packaging EPR has been implemented in Maryland, New York, Washington, and New Jersey (originally introduced in 2022 and still active). In 2016, the Product Stewardship Institute developed a model packaging EPR legislation, then updated it in 2019 with input from the industry and government. Maine and Oregon used the model to enact packaging EPR laws in 2021, Colorado followed suit in 2022 and, that same year, California also enacted legislation that the model informed.
Case studies
The project aims to increase the resilience of the city's transmission network, reducing dependence on energy supply from other locations, and meeting demand during the peak tourism season. WEG has just announced the supply of a complete energy storage system (BESS) for the city of Aspen, located in the state of Colorado, USA. The project aims to enhance the resilience of the local power grid, which does not have its own power generation system and is entirely dependent on generation from other cities. Microgrid management software The solution provided by WEG includes transformers, AC/DC voltage converters, battery containers, switching and protection systems, as well as advanced microgeneration or microgrid management software. The initial system will have a capacity of 1.5 MW of power and 2 MWh of stored energy The initial system will have a capacity of 1.5 MW of power and 2 MWh of stored energy, with the potential to expand to up to 8 MWh when fully implemented. The management software is being developed by teams of specialists in the United States and Brazil, where WEG’s largest software development technical team is based. Implementation of the BESS system This project is yet another in the portfolio of BESS systems in the United States, where WEG has a group of engineers dedicated to this product in the cities of Duluth, GA, and Barre, VT. According to Carlos Bastos Grillo, Managing Director of Digital and Systems at WEG, the implementation of the BESS system will not only reduce dependency on external energy sources, but also increase the city's resilience against power supply interruptions during the peak season and dry periods, when wildfires occur more frequently in the region. Facing similar challenges "The guarantee of a stable power supply is vital for the sustainability of local tourism, which is the backbone of Aspen's economy. We believe that this project will not only benefit residents and visitors, but also serve as a model for other cities facing similar challenges," assures the Executive. The BESS system is scheduled to be completed by September 2024, preparing Aspen for the high ski season that starts in November. Timely completion will ensure that the city does not suffer from power shortages during one of the most critical periods for local tourism.
Fluence Energy, Inc., a global provider of energy storage products, services, and optimization software for renewables and storage, announces that the company has been selected by Origin Energy Limited (Origin) to deliver a 300 MW / 650 MWh battery at the Mortlake Power Station in southwest Victoria. The project will use Fluence’s Gridstack™ energy storage product with a 15-year service agreement contributing to Origin’s strategy to accelerate renewable energy and energy storage in its portfolio. The system will also utilize Fluence’s AI-powered asset performance management (APM) software, Nispera™, to optimize the battery’s operational performance. Energy storage projects The system will capture excess power during periods of high renewable generation “We are honored to be selected by Origin to deliver this grid-forming battery-based energy storage system and deploy our ecosystem of solutions,” said Fluence President and Chief Executive Officer, Julian Nebreda. Julian Nebreda adds, “Australia is an important market for Fluence. Our local team is now delivering over 1 GW energy storage projects within Australia to enhance grid stability and enable the country’s clean energy transition.” Energy storage system to be commissioned in late 2026 The site preparation and civil works of the Mortlake Battery are expected to commence following a period of detailed design and procurement activity. The energy storage system is anticipated to be commissioned in late 2026. Located in Victoria’s South West Renewable Energy Zone, this energy storage system will provide system strength to the grid. The system will capture excess power during periods of high renewable generation and discharge to meet peak demand.
Mota-Engil, a multi-national with activities focused on the construction and management of infrastructures, responsible for the construction of the Canoas wastewater lifting station, selected WEG as the provider of a large package of electrical solutions for an important initiative to decontaminate the waters of the Bogotá River, in Colombia. Sustainable development When the project is completed, the pumping station will receive the wastewater from approximately 70% of the city, corresponding to the Fucha, Tintal, and Tunjuelo river basins, and the wastewater from the Municipality of Soacha, to be later pumped to the future Canoas Wastewater Treatment Plant, which will be one of the largest in Latin America. This great milestone will make it possible to return quality water to the Bogotá River and guarantee the sustainable development of the country. Safe distribution of energy Seventeen medium voltage switchgears were also supplied in addition to low voltage load centers One of the great challenges of this project is to guarantee the safe distribution of energy to the electrical systems and motors. For this, WEG has supplied a complete 115 kV substation that includes two 30 MVA/115/13.2 kV transformers, adding more efficiency and reliability to the plant. 17 medium voltage switchgears were also supplied in addition to low voltage load centers. For this project, WEG will also be supplying six three-phase induction motors and six medium voltage variable frequency drives. Each 4,300 kW motor, vertically mounted, will be coupled to its respective pump and will be responsible for pumping 6.4 cubic meters of wastewater per second to 51.6 meters height from the well, one of the most critical processes in the plant. Improvement of the quality of life This demonstrates the company's ability to develop integrated solutions that meet the most diverse applications. With participation in other important projects in the water and wastewater segment, in various processes such as potable water treatment plants, wastewater treatment, and distribution systems, WEG reinforces its experience in this segment by being selected for this important project, thus contributing to the improvement of the quality of life of the population and the environment.
WEG stands out once again by supplying a large custom-built induction motor for an Integrated Steel Plant in the Eastern part of India, in the state of Odisha. The induction motor of the MGW line, 26 MW/4 Poles/11 kV, is the largest ever manufactured in WEG's manufacturing site in India for the Indian market, it was selected to drive the main air compressor of the oxygen plant, essential for the operation of the entire Phase-1 of the steel production plant. challenges of interchangeability The project involved replacing an existing motor at the plant, a complex task that required technical expertise to overcome the challenges of interchangeability of the new motor with the existing structure. For this, it was essential to combine all the dimensions of the machine, ensuring that no modifications were necessary on-site or in the foundation. From the water inlet and outlet to the oil lines, cable entry points and shaft details, each element was carefully considered for an efficient transition. WEG supplies induction motor System criticality has been significantly minimized, eliminating the need for complex maintenance The choice of an induction motor not only met the technical demands, but also offered substantial advantages over synchronous motors, commonly used for this application because induction motors are rare in this size and power. System criticality has been significantly minimized, eliminating the need for complex maintenance associated with components such as the exciter and exciter panels, as well as delicate integration with motor and rotor telemetry systems. WEG's commitment The reliability of WEG's induction motor was a key element in keeping production running smoothly. Since the motor was installed, the steel plant has not experienced any unplanned downtime in the last one year of operation, contributing to a continuous and efficient production environment. With WEG's commitment to offer technological and reliable solutions to the market, this association not only increases the productivity of the plant, but also contributes to increasing the steel production capacity on Indian soil.
Products

